УЛК 666.974.66:51-74 ISSN 2617-1848

ОПТИМИЗАЦИЯ СОСТАВА КОМПЛЕКСНОГО МОДИФИКАТОРА НА ОСНОВЕ РАСШИРЯЮЩЕЙ ДОБАВКИ В ТЯЖЕЛОМ ЦЕМЕНТНОМ БЕТОНЕ

А. В. Назарова, к.т.н.; С. В. Сороканич, к.т.н.; Д. С. Коваленко

ГОУ ВО ЛНР «Луганский государственный университет им. В. Даля»

Аннотация. В данной статье представлены результаты выполненной оптимизации состава комплексного модификатора на основе расширяющей добавки для тяжелого цементного бетона. В качестве параметров рассматриваемых переменных факторов при планировании эксперимента приняты: содержание оксидносульфоалюминатной расширяющей добавки и поликарбоксилатного суперпластификатора. Целью оптимизации является получение комплексного модификатора бетона, который способен обеспечить марку по подвижности бетонной смеси П4 и предел прочности при сжатии в проектном возрасте не менее 40 МПа для бетонов с пониженной усадкой. Для достижения заданной цели область оптимальных значений лежит в следующих пределах: содержание расширяющей добавки — 8...10,5% от массы цемента, а содержание суперпластификатора «MasterGlenium 115» — 1,3...1,5%.

Ключевые слова: тяжелый бетон, усадка, расширяющая добавка, оптимизация состава, осадка конуса, прочность при сжатии.

Назарова Антонина Васильевна

Сороканич Станислав Васильевич

Коваленко Денис Сергеевич

АКТУАЛЬНОСТЬ РАБОТЫ

Долговечность является одним из требований к любому конструктивному материалу, то есть способностью его в определенных условиях внешнего воздействия не изменять свои свойства. При этом большинство этих материалов теряют свои свойства вследствие развития в них трещинообразования, разделяющих их на отдельные элементы, неспособные противостоять воздействиям внешней среды. Для тяжелых цементных бетонов зарождение и развитие в нем трещин способствует попаданию различных агрессивных веществ в эти трещины, что ведёт к развитию коррозии бетона и арматурной стали. Как правило, возникновению трещин в изделиях из бетона способствуют деформации усадки и расширения [1-4].

Одним из способов снижения деформаций усадки является введение расширяющих добавок в состав бетонов. При применении этих добавок в составах комплексных добавок-модификаторов бетонов возможно получить полифункциональный эффект и полностью реализовать потенциал всех компонентов [5, 6].

В данной работе был разработан и оптимизирован состав комплексного модификатора на основе расширяющей добавки оксидносульфоалюминатного типа. В качестве этой добавки обычно выступает смесь из глиноземсодержащего, сульфатного и оксидного компонентов. Расширение осуществляется при взаимодействии алюминатных и сульфатсодержащих фаз с образованием игольчатых кристаллов эттрингита, а также дополнительно за счет новообразований оксидов кальция из оксидного компонента. Глиноземсодержащим компонентом принята шамотно-каолиновая пыль (отход производства Донбасского региона, получаемый из электрофильтров вращающихся печей при обжиге шамота), характеризующаяся высокой дисперсностью частиц и повышенным содержанием Al₂O₃ (до 40 %). Гипсовый камень использовался в качестве сульфатного компонента. Оксидным компонентом принята известь.

Целью работы является оптимизация состава комплексного модификатора с расширяющей добавкой оксидносульфоалюминатного типа в тяжелом цементном бетоне с пониженной усадкой по величине содержания расширяющей добавки и поликарбоксилатного суперпластификатора для обеспечения требуемых показателей подвижности бетонной смеси и предела прочности при сжатии бетона в проектном возрасте.

ХАРАКТЕРИСТИКА МАТЕРИАЛОВ И МЕТОДЫ ИССЛЕДОВАНИЙ

Для экспериментальных исследований использовались следующие материалы:

- портландцемент ЦЕМ І 42,5Н (ПЦ) производства ОАО «Новоросцемент» (г. Новороссийск, РФ):
- природный кварцевый песок (П) Лутугинского песчаного карьера с модулем крупности 1,35;
- щебень фракции 5-20 (Щ) Торезского карьера;
- активный минеральный дисперсный заполнитель микрокремнезем (МК);
- расширяющая оксидносульфоалюминатная добавка (OCA) на основе шамотно-каолиновой пыли (65 %), гипса (30 %) и извести (5 %);
- поликарбоксилатный суперпластификатор (СП) «MasterGlenium 115»;
- техническая вода (В).

Подвижность бетонных смесей определяли в соответствии с требованиями ГОСТ 10181-2014 «Смеси бетонные. Методы испытаний», предел прочности при сжатии бетонных образцов определяли на образцах-кубах с размером ребра 0,1 м, твердевших в нормальных условиях в соответствии с ГОСТ 10180-2012 «Бетоны. Методы определения прочности по контрольным образцам».

Оптимизацию составов бетона выполняли с применением метода математического планирования эксперимента ($\Pi\Phi$ Э 2k). Статистический анализ и обработку полученных результатов проводили на основе статистических моделей в соответствии с [7].

Графическую интерпретацию уравнений выполняли с использованием программного комплекса «MathCAD for Windows».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

На первом этапе после выполненных экспериментальных исследований в качестве базового был принят состав бетонной смеси, который характеризовался маркой по подвижности $\Pi 4$ и пределом прочности в возрасте 28 суток 42,7 М Πa , а расход компонентов составлял: $\Pi \coprod = 400$ кг; $\Pi = 545$ кг; $\coprod = 1$ 170 кг; B = 175 л; OCA = 40 кг; MK = 38 кг; $C\Pi = 5,2$ л. На основе метода планирования эксперимента $\Pi \Phi \Theta = 2^k$ выполнена оптимизация состава комплексного модификатора на основе расширяющей оксидносульфоалюминатной добавки для тяжелого цементного бетона по величине содержания расширяющей добавки (на основе шамотно-каолиновой пыли, гипса и извести) и содержания поликарбоксилатного суперпластификатора.

В качестве параметров оптимизации комплексного модификатора приняты:

 Y_1 — подвижность бетонной смеси (граничные значения — не менее 16 см, не более 21 см);

 Y_2 — предел прочности бетона при сжатии в проектном возрасте (с граничными значениями не менее 40 МПа).

В качестве рассматриваемых переменных факторов при планировании эксперимента приняты:

 $X_{_1}$ — количество добавки СП, % от расхода цемента; $X_{_2}$ — количество расширяющей добавки ОСА, % от расхода цемента.

Значения факторов варьирования приведены в таблице 1.

Таблица 1. Значение факторов варьирования

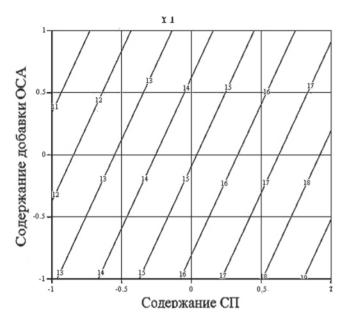
Код фактора	Интервал	у	Уровни фактора				
фактора	варьирования	-1	0	+1			
X ₁	0,2	1,1	1,3	1,5			
Χ,	2	8	10	12			

Матрица планирования и результаты экспериментов по подвижности бетонной смеси и прочности при сжатии представлены в таблицах 2, 3 соответственно.

Tаблица 2. Матрица планирования и результаты эксперимента (подвижность смеси)

№ оп.	Кодированное значение факторов		Натуральное значение факторов		Выходная переменная (осадка конуса, см)			Расчетные показатели		
	X ₁	X ₂	X ₁	X ₂	y _{u1}	y _{u2}	ȳ _u	S _{u2}	ŷu	
1	+1	+1	1,5	12	18	17	17,5	0,5	16,87	
2	-1	+1	1,1	12	8	11	9,5	4,5	10,07	
3	+1	-1	1,5	8	18	20	19	2	19,67	
4	-1	-1	1.1	8	13	14	13.5	0.5	12.87	

Таблица 3.


Мотрино плонирования	и результаты эксперимента	(HINGHILLOCTE HING CWOTHE)
угатнина планинования	и пезультаты экспенимента	СППОЧНОСТЬ ППИ СЖАТИИТ

№ оп.	Кодированное значение факторов		Натуральное значение факторов		Выходная переменная (предел прочности при сжатии, МПа)			Расчетные показатели		
	X ₁	X ₂	X ₁	X ₂	y _{u1}	y _{u2}	y _{u3}	Σu	S _{u2}	ŷu
1	+1	+1	1,5	12	34	36,5	35	35,17	3,16	36,5
2	-1	+1	1,1	12	42	40,7	41,5	41,4	0,86	41,3
3	+1	-1	1,5	8	43,7	42,1	45,3	43,7	5,12	40,1
4	-1	-1	1.1	8	41.5	42.6	43.7	42.6	2.42	44.9

Проверка значимости коэффициентов математических моделей выполнена по критерию Стьюдента, адекватность математических моделей проверена по критерию Фишера. Были получены следующие уравнения регрессии:

$$\hat{y}_1 = 14,87 + 3,4X_1 - 1,4X_2 \tag{1}$$

$$\hat{y}_2 = 40, 7 - 2, 4X_1 - 1, 8X_1 X_2 \tag{2}$$

Формулы перехода от кодированных значений факторов эксперимента к натуральным для уравнений 1 и 2 соответственно имеют вид:

$$X_1 = \frac{x_1 - 1,3}{0.2}; \qquad X_2 = \frac{x_2 - 10}{2}.$$
 (3, 4)

Графическая интерпретация уравнения регрессии (1), характеризующего изменение подвижности бетонных смесей от действующих факторов (X_1, X_2) , представлена на рис. 1.

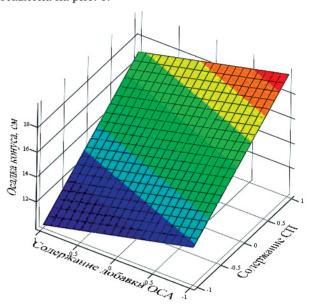


Рис. 1. Графическая интерпретация уравнения регрессии (1), характеризующего изменение подвижности бетонных смесей от действующих факторов (X_i, X_i)

Установлено, что на величину подвижности бетонной смеси в большей мере оказывает влияние фактор (X_1) — содержание суперпластификатора, чем расширяющей добавки ОСА (X_2) . Повышение содержания добавки СП приводит к повышению подвижности бетонной смеси, напротив, повышенное содержание до-

бавки ОСА снижает её технологические свойства, что является следствием высокой водопотребности компонентов этой добавки. Графическая интерпретация уравнения регрессии (2), характеризующего изменение предела прочности при сжатии бетона от действующих факторов (X_1 , X_2), представлена на рис. 2.

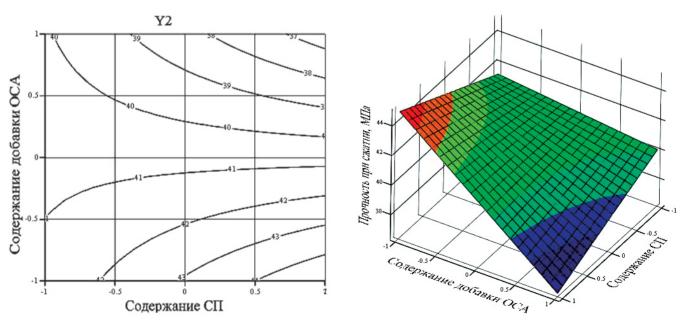


Рис. 2. Графическая интерпретация уравнения регрессии (2), характеризующего изменение предела прочности при сжатии в возрасте 28 суток от действующих факторов (X_i, X_i)

Показано, что прочность бетона при сжатии повышается при увеличении дозировки суперпластификатора (фактор Х.) и снижении расхода добавки ОСА (фактор Х₂). Также присутствует вторая зависимость повышения прочности: при повышении содержания расширяющей добавки ОСА необходимая прочность (40 МПа) достигается при снижении количества СП.

В соответствии с принятыми граничными значениями функций отклика: марка по подвижности бетонной смеси П4, предел прочности при сжатии бетона в проектном возрасте не менее 40 МПа, область оптимальных составов бетонных смесей по величине содержания расширяющей оксидносульфоалюминатной добавки (ОСА=8...10,5 %) и суперпластификатора $(C\Pi=1,3...1,5\%)$ представлена на рис. 3.

При расчетах экономической эффективности за базовый вариант принят состав бетона с прочностью при сжатии $R_{cx} = 43.8 \ M\Pi a$, в котором расширяющим компонентом принята порошкообразная добавка «Expancrete» итальянской фирмы «Мареі», а в качестве разработанного - состав бетона с прочностью при сжатии R_{cx} = 43,0 МПа с оптимизированной по составу расширяющей оксидносульфоалюминатной добавкой на основе шамотно-каолиновой пыли, гипса и извести.

Калькуляция стоимости сырьевых материалов на 1 м³ бетона по базовому и разработанному вариантам составов приведена в таблице 4.

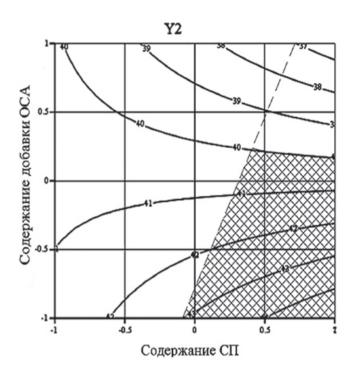


Рис. 3. Область оптимальных составов тяжелого цементного бетона с комплексным модификатором на основе расширяющей добавкой ОСА

Таблииа 4.

Калькуляция стоимости сырьевых материалов

Наименование сырьевых материалов	Ед. изм.	Стоимость материала, руб.	Расход на 1 м³ бетона	Стоимость на 1 м³ бетона
1	2	3	4	5
	Ба	зовый состав		
Портландцемент ЦЕМ I 42,5H	Т	6400	0,400	2560
Песок	Т	400	0,545	218
Щебень	Т	650	1,175	763,75
Вода	Т	33,64	0,176	5,92
Суперпластификатор Master Glenium 115	Л	230	5,2	1196
Микрокремнезем	КГ	15	38	570
Expancrete	КГ	100	28	2800
Итого:				8113,67
	Состав	с добавкой ОСА		
Портландцемент ЦЕМ I 42,5H	Т	6400	0,400	2560
Песок	Т	400	0,545	218
Щебень	Т	650	1,175	763,75
Вода	Т	33,64	0,176	5,92
Суперпластификатор MasterGlenium 115	Л	230	5,2	1196
Микрокремнезем	КГ	15	38	570
Добавка ОСА:				
— шамотно-каолиновая пыль	КГ	15	20,8	312
— ГИПС	КГ	4	9,6	38,4
— известь	КГ	7	1,6	11,2
Итого:				5675,27

Согласно данным таблицы 4, экономическая эффективность по показателю стоимости сырьевых материалов на 1 м³ модифицированного бетона при замене фирменной расширяющей добавки «Expancrete» разработанной добавкой ОСА составит:

9 = 8113,67 - 5675,27 = 2438,4 py6.

ВЫВОДЫ

По результатам выполненной оптимизации состава комплексного модификатора на основе расширяющей добавки для тяжелого цементного бетона с пониженной усадкой по содержанию расширяющей добавки и суперпластификатора было установлено, что для обеспечения марки бетонной смеси по подвижности $\Pi 4$ и предела прочности при сжатии бетона в проектном возрасте не менее 40 Мпа область оптимальных составов находится в следующих пределах: содержание расширяющей добавки оксидносульфоалюминатного типа 8...10,5~% от массы цемента; содержание суперпластификатора «MasterGlenium 115» — 1,3...1,5~%.

По итогам расчетов экономической эффективности по показателю стоимости сырьевых материалов на 1 м³ модифицированного бетона при замене фирменной расширяющей добавки «Expancrete» разработанной добавкой ОСА сумма составит 2 438,4 руб.

Список литературы

1. Батраков, В. Г. Модификаторы бетона— новые возможности [Текст] / В. Г. Батраков // Мат-лы 1-й Всерос. конф. по проблемам бетона и железобетона. — М.: Ассоциация «Железобетон», 2001. — Кн. 1. — С. 184-208.

- 2. Холмянский, М. М. Бетон и железобетон. Деформативность и прочность [Текст] / М. М. Холмянский. — М.: Стройиздат. 1997. — 576 с.
- 3. Рамачандран, В. Наука о бетоне [Текст] / В. Рамачандран, Р. Фельдман, Дж. Бодуэн. М.: Стройиздат, 1986. 278 с.
- 4. Kurdowski, W. Cement and concrete chemistry [Text] / W. Kurdowski. Springer Publ., 2014. 700 p.
- Кардумян, Г. С. Новый органо-минеральный модификатор серии «МБ» — Эмбелит для производства высококачественных бетонов [Текст] / Г. С. Кардумян, С. С. Каприелов // Строительные материалы. — № 8, 2005. — С. 12-15.
- 6. Кирсанова, А. А. Высокофункциональные тяжелые бетоны, модифицированные комплексными добавками, включающими метаколин [Текст]: дис. канд. техн. наук: 05.23.05 / А. А. Кирсанова Томск, 2016. 164 с.
- 7. Вознесенский, В. А. Современные методы оптимизации композиционных материалов [Текст] / В. А. Вознесенский, В. Н. Выровой, В. Е. Керш, Т. В. Ляшенко К.: Будивельник, 1983. 144 с.